The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation
نویسندگان
چکیده
Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications.
منابع مشابه
Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride.
A new thermally conductive polyimide composite film has been developed. It is based on a dispersion of different particle sizes of boron nitride (BN) in a polyimide (PI) precursor, polyamic acid (PAA). Subsequently, thermal imidization of PAA at 350 degrees C produced the corresponding polyimide composites. 3-Mercaptopropionic acid was used as the surfactant to modify the BN surface for the dis...
متن کاملSilver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical ...
متن کاملSPECIAL ISSUE: EARLY CAREER SCHOLARS IN MATERIALS SCIENCE In situ synthesis of cold-rollable aluminum–aluminum nitride composites via arc plasma-induced accelerated volume nitridation
Our study proposes in situ synthesis of cold-rollable aluminum nitride (AlN) reinforced aluminum matrix composites with attractive thermal properties via arc plasma-induced accelerated volume nitridation (APAVN). Within three minutes of repeated APAVN using commercial nitrogen gas, volume fraction of AlN increased up to 40 vol%, which is the highest value ever reported by in situ nitridation of...
متن کامل3D Packaging Materials based on Graphite Nanoplatelet and Aluminum Nitride Nanocomposites
Nanostructured composites with efficient percolation networks are promising candidates for packaging materials due to their high thermal conductivity. In this study, we investigate the thermal conductivity of composites consisting of a combination of exfoliated graphene nanoplatelet (xGNP) and aluminum nitride (AlN) particles in polyvinylidine fluoride (PVDF) matrix. The surfaces of the AlN par...
متن کاملDielectric and thermal properties of epoxy/boron nitride nanotube composites*
We report the fabrication of and investigations into the dielectric and thermal properties of epoxy/boron nitride nanotube (BNNT) composites. It was found that BNNT fillers can effectively adjust the dielectric constant of epoxy. Moreover, the thermal conductivity of epoxy was improved by up to 69 % with 5 wt % BNNTs. Our studies indicate that BNNTs are promising nanofillers for polymers, to ob...
متن کامل